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Supplementary Note 1: Three-Dimensional Chemomechanical Model 

To study how disruption of cytoskeletal components impacts nuclear mechanics, we develop a 

coarse-grained chemomechanical model that accounts for the key cellular components involved 

in the transmission of physical signals from the ECM to the nucleus including (i) the 

cytoskeleton, (ii) the nucleus, and (iii) the focal adhesions (see Fig. 3). In the following sections, 

we present the constitutive equations of these components. The model will be implemented in a 

finite element framework.  

1. Cytoskeleton 

The cytoskeleton in our model is composed of three elements including (i) the myosin motors, 

(ii) the microtubules, and (iii) the actin filaments (see Fig. 3).  

 

1.1 Myosin motors 

The contractile force generated by an individual phosphorylated myosin motor can be modeled 

as a force dipole which is a pair of equal but oppositely directed forces (see Fig. 3A). The spatial 

density of these force dipoles in our coarse-grained model is treated as a symmetric tensor     

whose components represent cell contractility in different directions 
1,2

. As shown in equation (1) 

in the main text, the average of contractility in all three directions, 
 

 
                   , 

is related to the average of stress in the actin filaments network, 
 

 
                   , 

and the anisotropy in the components of the stress tensor,   , as follows 

   

 
   

   

 
                                                                                                                                  

where this stress-dependent feedback mechanism is regulated by the feedback parameters    and 

  , while in the absence of tension (     ),    regulates the mean contractility 
 

 
    and relates 

it to the cell contractility in the quiescent state (initial contractility)   . Here, we explicitly define 

the contractility tensor     and the stress tensor     as functions of strain tensors    
   

 and    
   

. 

Note that    
   

 and    
   

 are the strain tensors of cytoskeletal components that are in compression 



(e.g., microtubules) and tension (e.g., actin filaments), respectively. Fig.S9 shows      and      

which are one-dimensional representations of strain tensors    
   

 and    
   

. 

To capture the fact that cell contractility increases with tension, the cell contractility tensor     is 

defined in our model as a function of the strain tensor    
   

 as follows  
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   )   ̅                                                                                

where     ,     , and  ̅  are the motor density effective modulus, the polarization effective 

modulus, and the effective contractility 

     
          

        
                     

          

        
                  ̅  

     

     
                               

which are related to       (the bulk modulus of the cytoskeletal components that are in 

compression),       (the shear modulus of the cytoskeletal components that are in compression), 

   (the volumetric chemo-mechanical feedback parameter),    (the deviatoric chemo-

mechanical feedback parameter),    (the volumetric chemical stiffness), and    (the deviatoric 

chemical stiffness) 
1,2

. 

 

1.2. Microtubules  

Consistent with experimental observations where microtubules are compressively loaded by the 

internally generated cell contractile forces 
3
, in our coarse-grained model, the cell contractility 

    applies the compressive stress      
    

   
   

 on the microtubule network where C
    

 is the 

stiffness tensor of the microtubule network  

     
    

                  (              
 

 
      )                                                               

1.3. Actin filaments 



In addition to inducing the compressive stress      
    

   
   

 on the microtubule network, the cell 

contractility     also generates tensile stress in the actin filament network,     which is 

transmitted to the extracellular matrix 

          
    

   
   

                                                                                                                                    

Note that the cell contractility     is initially isotropic in our simulations. This indicates that all 

simulations start with the same contractility in all directions;            . This can be 

shown by rewriting equation (S1.2) in the following form  

         
   

   
   

  ̅                                                                                                                                     

where  

     
   

                (              
 

 
      )                                                                       

We can see from equations (S21.5) and (S1.6) that in the stress-free unpolarized state      , 

the diagonal components of   are equal and non-zero              , while its off-

diagonal components are all zero                          . This indicates that 

the cell contractility     is initially isotropic and we have the same contractility in all directions 

in the initial configuration.  

As the tensile stress in the actin filament network,    , increases, the stiffness of the actin 

filament network      
   

 in our model increases to capture the fact that cells actively respond to 

increasing tension by increasing their own stiffness, which is correlated with recruitment and 

alignment of actin filaments along the direction of the tensile stress 
4,5

. To this end, the stiffness 

of the actin filament network      
   

 in our model is defined as follows 

     
   

      
   

      
   

                                                                                                                                    

where C
   
 represents the tension induced stiffening of the actin network and C

   
 is the initial 

stiffness of the actin network 



     
   

                (              
 

 
      )                                                                        

where      and      are respectively the initial bulk and shear moduli of the actin network. As 

C
   

 increases with tension, we first decompose the stress in the actin filament network 𝛔 as 

follows 

       
   

    
   

    
   

                                                                                                                              

where 𝛔    is linearly related to the strain tensor      using the stiffness tensor C
   

 

   
   

      
   

    
   

                                                                                                                                            

Next, using the following spectral decomposition, we decompose the strain tensor      as follows 

     ∑  
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where the orthogonal eigenvectors   ,   , and    are the unit vectors in the directions of the 

principal strains   
   
,   

   
, and   

   
, respectively. In equation (S1.12),   denotes the dyadic 

product of two arbitrary vectors   and   as              and the symmetric tensors 

        ,         , and          are the eigenprojections of the strain tensor 

    . With the eigenvalues   
   

 and eigenvectors    of the strain tensor      at hand, we define 

the stress tensor    
   

 in equation (S1.10) as a nonlinear function of the strain tensor    
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where the derivative of the energy function     
   

  is defined in our model as follows 
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Note that the principal stresses   
   

 in the above equation vanish for the principal strains   
   

 

below             where    and           are respectively the critical (tensile) principal 

strain and transition width. For      
   

   , we use a smooth transition function to ensure the 

continuity and smoothness of   
   

       
   

 at the transition points             and 

            where   is the transition constant. For large strains   
   

   , the principal stress 

  
   

 is defined as a nonlinear function of the principal strain   
   

 with the stiffening parameters ℓ 

and  . 

We now can derive C
   

 using a piecewise linear approximation  

     
   

 
    

   

    
   

                                   C    
 𝛔   

     
                                                                                  

which can be expanded by using the spectral decomposition of 𝛔    
6
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and applying the chain rule to its first term 
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If    
   

 has three distinct eigenvalues (  
   

   
   

   
   

), by taking the derivatives of   
   

 and    

with respect to     , C
   

 can be derived as follows  
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where the fourth-order tensor  (    )
 
       and    (the fourth-order symmetric identity tensor) 

are obtained as follows 
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If    
   

 has two identical eigenvalues (  
   

   
   

   
   

 , then C
   

 is obtained as follows 

C
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where   is the second-order identity tensor 

                                                                                                                                                                  

and the constants   ,   ,   ,   ,   , and    are given as follows 
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where (     ) are here cyclic permutations of (1,2,3). 

Finally, if    
   

 has three identical eigenvalues (  
   

   
   

   
   

 , then C
   

 is given as follows 
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Note that    
       

   
 in equations (S1.18), (S1.23), and (S1.24) can be derived by taking the 

derivative of equation (S1.14)  
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Also, note that   
   

 in our formulation is a function of   
   

 only and there is no dependence of 

  
   

 on   
   

 for    . 

 

1.4. Total cytoskeletal stiffness 

The cytoskeleton is composed of these three elements: (i) the myosin motors, (ii) the 

microtubules, and (iii) the actin filaments. As the actin element is connected in series to the other 

two elements (see Fig.S9), the total stiffness of the cell, 𝐂, can be obtained as follows 

𝐂  ((𝐂   )
  

 (𝐂   )
  

)
  

                                                                                                                 

where  

𝐂    𝐂    𝐂                                                                                                                                       

and 

𝐂    𝐂    𝐂    𝐂                                                                                                                             

In equation (S2.35), the second-order tensors 𝐂   , 𝐂    , and 𝐂    are the 6×6 matrix 

representations of the fourth-order tensors C
   

 (equation S1.7), C
    

 (equation S1.4), and C
   

 

(equation S1.8), respectively. Note that all the above fourth-order stiffness tensors can be 

degraded to square matrices to be used in the finite element framework. For example, the fourth-

order tensor       can be degraded to the second-order tensor C   as follows   
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1.5. The system of nonlinear equations  

In our coarse-grained finite element model, the total cytoskeletal stress field     can be 

determined from (S1.5) or (S1.10). The total cytoskeletal stiffness C   can be also given by 

equation (S1.26). However, both     and C   are functions of unknown strain tensors    
   

 and 

   
   

. Thus, using an iterative procedure, we first need to determine our unknowns strain tensors 

   
   

 and    
   

. To this end, we first define the following 12×1 vector  

  {        }                                                                                                                           

which contains our unknown variables 

  ,   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   -

 

                    

We then need 12 equations to determine these 12 unknowns and to define our system of 

equations. 6 of these 12 equations can be obtained from the following condition 

𝛔  𝛔    𝛔                                                                                                                                               

where 𝛔    is the stress generated by the actomyosin contractility which is directly transmitted to 

the actin filament network (see equations (S1.5) and (S1.6))  

   
   

     (     
   

      
    

)    
   

  ̅                                                                                                

and 𝛔    is the stress transmitted to the actin filament network (see equation S1.10) 

   
   

        
   

    
   

    
   

                                                                                                                



The other 6 equations can be obtained from the following condition 

                                                                                                                                                         

where the second-order tensor   is the total strain of the cell. As both stress and strain tensors 

   
   

,    
   

,    
   

, and    
   

 are symmetric, we can define the 12×1 vector    

  {        }                                                                                                                             

which contains our 12 equations 

      
   

    
   

                                                                                                                                           

      
   

    
   

                                                                                                                                          

      
   

    
   

                                                                                                                                          

      
   

    
   

                                                                                                                                          

      
   

    
   

                                                                                                                                          

      
   

    
   

                                                                                                                                          

          
   

    
   

                                                                                                                                

          
   

    
   

                                                                                                                                 

          
   

    
   

                                                                                                                                  

           
   

    
   

                                                                                                                               

           
   

    
   

                                                                                                                                

           
   

    
   

                                                                                                                             

We then determine the 12×12 Jacobian matrix    
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which is used in the Newton-Raphson method to determine the unknown vector   

                                                                                                                                                 

where    and      are respectively the solutions for   and     iterations. The following initial 

guess    and convergence criterion are used in our simulations  

   {    }    
                                                                                                                            

| |  √                                                                                                                     

where      is the convergence threshold. Using           in our simulations, we stop the 

iterative process (S1.35) when the magnitude of the vector   is less than     . With    
   

 and    
   

 

obtained from (S1.35), we can calculate the total cytoskeletal stress field     from equations 

(S1.30) or (S1.31) and the total cytoskeletal stiffness C   from equation (S1.26) to complete our 

constitutive equations. 

 

1.6. Actomyosin contractility increases with tension anisotropy 

Combining equation (S1.5) with (S1.6), it can be shown that the average of contractility, 

 

 
                   , increases with the average of stress,  

 

 
                  

 , 
1,7
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/
   

 
 .

        

          
/                                                                               

The above feedback between the averages of contractility and stress enables us to capture the 

fact that actomyosin contractility increases with cell substrate area 
8
 and microenvironment 

stiffness 
5,9

. However, actomyosin contractility has been also observed to increase with cell 



polarization 
8
 where fibroblasts cultured on a rectangular substrate (anisotropic tension) have 

higher levels of phosphorylated myosin light chain (a marker for myosin II contractility) and F-

actin compared to fibroblasts cultured on a square substrate (isotropic tension) with the same 

substrate area 
8
. To capture the fact that contractility increases with anisotropy in the components 

of the stress tensor    , equation (S1.38) is modified as follows 

   

 
 .

          

          
/
   

 
      .

        

          
/                                                                

where        .
 

 
(
  

  
  )/   represents the anisotropy in tension (stress polarization) while 

  >    >    are the principal stress values of the stress tensor     with   >    > 0. Also,    in the 

above equation is the anisotropic chemo-mechanical feedback parameter which regulates the 

increase in myosin phosphorylation with anisotropic tension. To implement equation (S1.39) in 

our finite element framework, we use a piecewise linear approximation and we simply replace    

in equation (S1.3) with     (
          

        
)     in each step of the simulation. Note that 

replacing (
          

          
) ,   , and (

        

          
)  in equation (S1.39) with   ,   , and   , 

respectively, gives us equation (1) in the main text.   

2. Nuclear  nterior (Chromatin) 

Recent uniaxial stretching experiments of single isolated nuclei shows that, unlike the lamin 

network, chromatin does not exhibit strain stiffening even at large extensions 
10

. Therefore, we 

model chromatin as a linear elastic material 
1
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      ̅  
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( ̅   

 

 
    ̅  )                                                       

where 𝛔̅ and  ̅ are respectively the second-order stress and strain tensors in the chromatin model, 

and C̅ is the fourth-order stiffness tensor of chromatin 

                                                 
1
 All tensors, vectors, and scalars used in the chromatin model are denoted by “

-
”. 



 ̅      ̅        ̅ (              
 

 
      )                                                                               

with 

 ̅  
 ̅

      ̅ 
                       ̅  

 ̅

     ̅ 
                                                                                             

where  ̅,  ̅,  ̅, and  ̅ are the bulk modulus, shear modulus, elastic modulus, and Poisson’s ratio 

of chromatin, respectively. In addition to chromatin, the nuclear interior is also filled with fluid 

which causes hydrostatic pressure as the nucleus is deformed by contractility-dependent 

compressive forces. 

3. Nuclear Envelope 

Consistent with the experimentally observed fibrous nature of the lamina of the mammalian cell 

nuclei 
11

, the nuclear envelope is modeled as a filamentous network material (lamin network) 

which stiffens with tension. To this end, we first decompose the stress in the nuclear envelope 

 ̂   as follows 
2
  

 ̂    ̂  
   

  ̂  
   

                                                                                                                                             

where 𝛔̂    is linearly related to the nuclear envelope strain  ̂ using the initial stiffness of the 

nuclear envelope, Ĉ
   

, 

 ̂  
   

  ̂    
   

  ̂                                                                                                                                                  

while 𝛔̂    is a nonlinear function of the strain tensor  ̂  
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where the orthogonal eigenvectors  ̂ ,  ̂ , and  ̂  are the unit vectors in the directions of the 

principal strains   ̂ ,   ̂ , and   ̂  , respectively, and the symmetric tensors  ̂   ̂   ̂ ,  ̂  
                                                 
2
 All tensors, vectors, and scalars used in the nuclear envelope model are denoted by “^”. 



 ̂    ̂ , and  ̂   ̂   ̂  are the eigenprojections of the strain tensor  ̂. Note that   in 

equation (S3.3) represents the dyadic product of two arbitrary vectors   and   as         

    . As shown in (S3.3), the stress tensor 𝛔̂    is defined as a function of its eigenprojections 

( ̂ ,  ̂ ,  ̂ ) and principal stresses ( ̂ 
   

,  ̂ 
   

,  ̂ 
   

). The eigenprojections  ̂ ,  ̂ , and  ̂  can be 

determined from the following spectral decomposition of the strain tensor  ̂ 
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We use equation (S1.14) to define the principal stresses ( ̂ 
   

,  ̂ 
   

,  ̂ 
   

) as functions of the 

principal strains (  ̂,   ̂,   ̂) which have been previously determined from equation (S3.4)  
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In the above equation,   ̂    ̂       ̂ and   ̂    ̂       ̂ are the transition points,   ̂        ̂ 

is the transition width,   ̂ is the critical (tensile) principal strain,  ̂ is the transition constant, and 

ℓ̂ and  ̂ are the stiffening parameters which regulate strain stiffening of the lamin network at 

large strains   ̂    ̂.  

Similar to equation (S3.1), the stiffness of the nuclear envelope lamina network Ĉ  can be 

decomposed as follows 

 ̂      ̂    
   

  ̂    
   

                                                                                                                                    

where Ĉ
   

 is the initial stiffness of the nuclear envelope lamina network 



 ̂    
   

  ̂           ̂   (              
 

 
      )                                                                        

and  ̂    and  ̂    are respectively the initial bulk and shear moduli of the lamin network. The 

second term in equation (S3.6) captures the tension stiffening of the nuclear lamina network and 

can be calculated using the following piecewise linear approximation 

 ̂    
   

 
  ̂  

   

  ̂  
                                                                                                                                                  

Similar to equation (S1.15), the exact expression for  ̂    
   

 can be determined from equations 

(S1.16-25) by replacing   
   

,   
   

,   , and      with  ̂ 
   

,   ̂,  ̂ , and  ̂, respectively (   1, 2, 3). 

 

 

 

  



Table S1: Comparison between literature data and this work on lamin A/C knockdown (KD) 

No. Relative 

change 

of 

Young’s 

modulus 

Method  Cell line Nucleus 

status 

Treatment 

protocol 

References
*
 

1 -33% Micropipette 

aspiration 

Mouse 

embryonic 

fibroblasts 

Intact 

nucleus 

Gene silencing, 

100% KD  

Ref.4 

2 -55% Micropipette 

aspiration 

A549 Intact 

nucleus 

siRNA 

transfection, 

>85% KD 

Ref.22 

3 -65.6% Micropipette 

aspiration 

A549 Isolated 

nucleus 

siRNA 

transfection 

Ref.7 

4 -46% Micropipette 

aspiration 

Mesenchyma

l stem cells 

Isolated 

nucleus 

siRNA 

transfection 

Ref.7 

5 -55.7% Membranes-

induced strain 

Mouse 

skeletal 

myoblasts 

Intact 

nucleus 

Gene silencing, 

100% KD 

Ref.24 

6 -48% Micropipette 

aspiration 

A549 Intact 

nucleus 

siRNA 

transfection, 

50% KD 

Ref.25 

7 -36% Pipette-based 

micromanipul

ation 

HeLa Isolated 

nucleus 

siRNA 

transfection, 

80% KD 

Ref.26 

8 -24% Brillouin NIH 3T3 Intact 

nucleus 

siRNA 

transfection, 

66% KD 

This work 

* the references in the main text. 

 

  



Table S2: Comparison between literature data and this work on chromatin decondensation 

No. Relative 

change of 

Young’s 

modulus 

Method  Cell line Nucleus 

status 

Treatment 

protocol 

References
*
 

1 -33% Optical stretcher Mouse 

embryonic 

stem cell 

Intact 

nucleus 

90 ng/mL, 

2 hours 

Ref.30 

2 -56% AFM Cardiac 

myocytes 

Intact 

nucleus 

200 

µg/mL, 4 

hours 

Ref.29 

3 -26% AFM human 

HT1080 

fibrosarcoma 

Intact 

nucleus 

100 

ng/mL, 24 

hours 

Ref.28 

4 -30% Micropipette-based 

micromanipulation 

Mouse 

embryonic 

fibroblasts 

Isolated 

nucleus 

30 ng/mL, 

16-24 

hours 

Ref.26 

5 -32% Micropipette-based 

micromanipulation 

HeLa Isolated 

nucleus 

30 ng/mL, 

16-24 

hours 

Ref.26 

6 -53.5% Microneedle-based 

micromanipulation 

HeLa Isolated 

nucleus 

150 

ng/mL, 3 

hours 

Ref.31 

7 -27% Brillouin NIH 3T3 Intact 

nucleus 

100 

ng/mL, 2 

hours 

This work 

* the references in the main text. 

  



 

Fig. S1. Cell traction force, cell stiffness, and actomyosin contractility increases with 

substrate stiffness. NIH 3T3 fibroblasts are cultured on circular micropatterned substrates with 

different substrate stiffness 
12

. The model predicts that cells on stiffer substrates generate higher 

tractions forces which is in agreement with traction force microscopy results in reference 
12

. 

Furthermore, the cell contractility,    , the stiffness of the actin network,      
   

, and the stress it 

carries,    , increase with substrate stiffness in our simulations while nuclear height decreases 

with increasing substrate stiffness. 



 

Fig. S2. Cell traction force, cell stiffness, and actomyosin contractility increases with 

substrate area. NIH 3T3 fibroblasts are cultured on rigid circular micropatterned substrates with 

different substrate areas 
8
. Our simulations demonstrate the maximum principal contractility 

              for cells with small and large substrates where   ,     and    are the 

eigenvalues of the contractility tensor    . The model predicts that cells on larger substrates 

exhibit higher contractility which is in agreement with experimental observations in reference 
8
 

where cells with higher substrate areas have higher levels of phosphorylated myosin light chain 

(p-MLC). Also, similar to the effect of substrate stiffness in Supplementary Fig.1, the stiffness of 

the actin network,      
   

, and the stress it carries,    , increase with substrate area in our 

simulations while nuclear height decreases with increasing substrate area. 

  



 

Fig. S3. Actomyosin contractility increases with substrate aspect ratio. NIH 3T3 fibroblasts 

are cultured on rigid micropatterned substrates with the same surface area but different substrate 

aspect ratios 
13

. Our simulations show that the mean contractility       
 

 
              in 

the rectangular cell is higher than the square cell where    ,    , and     are the normal 

components of the the contractility tensor    . The model prediction is in agreement with 

experimental observations in reference 
8
 where fibroblasts with higher substrate aspect ratios 

have higher levels of phosphorylated myosin light chain (p-MLC). 



  

Fig. S4. Tension-dependent formation of mature focal adhesions. (A) A thin layer of elastic 

material is used in our coarse-grained model to capture the tension-dependent formation of 



mature focal adhesions. The adhesion layer is initially soft while it stiffens under tension beyond 

a critical value of tensile stress. The cell contractility is initially uniform (independent of spatial 

location) and isotropic (independent of direction) as the cell is seeded on the adhesive substrate 

(initial configuration). However, for an elongated substrate geometry, the initially uniform and 

isotropic contractility generates a non-uniform and anisotropic stress field on the adhesion layer. 

As a result, the adhesion layer experiences higher tensile stresses and stiffens at the two ends. (B) 

The adhesion layer in our corase-grained model can be regarded as a set of initially soft and 

uniform nonlinear mechanical elements (representing the initially weak connections between the 

cell and its rigid substrate) which stiffens under tension beyond a critical value of tensile stress 

and connects the cell to the substrate (representing the tension-dependent formation of mature 

focal adhesions). 

  



 

 

Fig. S5. Transmission of mechanical signals from the substrate to the nucleus in the coarse-

grained model. (A) The cell contractility is initially uniform (independent of spatial location) 



and isotropic (independent of direction) as the cell is seeded on the adhesive substrate. (B) The 

uniform and isotropic contractility generates a non-uniform and anisotropic stress field at the cell 

boundaries where the adhesion layer experiences higher tension at the two ends along the long 

axis of the cell. Subsequently, the adhesion layer stiffens at the two ends representing the 

experimentally observed formation of mature focal adhesions which connects the cell to the 

substrate 
2,13

. (C) As the focal adhesions are formed at the two ends, cell contractility is resisted 

along the long axis of the cell which subsequently generates tension in the cytoskeleton along the 

long axis of the cell. As a result, the actin filament network stiffens with cytoskeletal tension 

along the long axis of the cell representing the experimentally observed formation of stress fibers 

2,13
. (D) These stress fibers form an arch bridge above the nucleus and impose compressive 

forces on the nucleus 
13,14

. As the nucleus becomes flattened and elongated under the these 

compressive forces, tension is generated in the nuclear envelope which leads to stiffening of the 

nuclear envelope representing the experimentally observed (i) tension stiffening of the lamina 

network 
10

, and (ii) increase of lamin A/C level with actomyosin contractility 
15

. 



 

Fig. S6. Elongated substrate geometries induce polarized contractility and polarization of 

stress in the actin filament network. (A) The cell contractility     is initially uniform 



(independent of spatial location) and isotropic (independent of direction) as the cell is seeded on 

the adhesive substrate (initial configuration). As a result, the principal contractility components 

   and    (primarily along the long (z-direction) and short (x-direction) axes of the cell, 

respectively) are equal in the initial configuration where   ,     and    are the eigenvalues of the 

contractility tensor    . (B) In addition to the cell contractility    , the stress in the actin network 

    are also initially uniform and isotropic as the cell is seeded on the adhesive substrate (initial 

configuration). As a result, the principal stress components    and    (primarily along the long 

(z-direction) and short (x-direction) axes of the cell, respectively) are equal in the initial 

configuration where   ,     and    are the eigenvalues of the stress tensor    . The isotropic 

contractility, however, generates an anisotropic stress field at the boundaries of an elongated 

substrate geometry which leads to the formation of mature focal adhesion at the two ends along 

the long axis of the cell. As a result, cell contractility is more resisted along the long axis of the 

cell which leads to polarization of the stress in the actin network and polarized contractility along 

the long axis of the cell. 

  



 

 

Fig. S7. Mechanical force balance in the nuclear envelope. As cytoskeletal stress fibers 

impose inward traction forces to the nuclear envelope and compress the nucleus, the nuclear 

envelope also experiences outward traction forces from the nuclear interior including (i) the 

mechanical forces due to the resistance of chromatin against deformation, and (ii) the internal 

pressure due to fluid content. The inward and outward traction forces are balanced by the 

mechanical forces generated in the nuclear envelope due to the resistance of the nuclear lamina 

network against deformation. 

  



 

Fig. S8. Experiment and simulation of Lamin A/C knockdown. (A) - (C) Immunofluorescent 

shows Lamin A/C was successfully knocked down. Scale bar is 20 µm. (D) Quantification shows 

the knockdown level is about 66%. (E) Our simulations show that a 60% decrease in the initial 

elastic modulus of the nuclear envelope lamina network (e.g., a 60% decrease of  ̂    in equation 

(S3.7)) yields a decrease of 26% in the effective elastic modulus of the nucleus, which is very 

similar as calculated in our experiments (24% decrease). The effective elastic modulus of the 

nucleus in the vertical direction in our theoretical model is calculated as the ratio of the average 

vertical compressive stress (exerted to the nucleus by the cytoskeleton) to the resulting average 

vertical compressive strain of the nucleus. The error bar represents the standard error of the 

mean. 

 



 

Fig. S9. Experiment and simulation of the nuclear modulus changes upon chromatin 

decondensation with TSA. The effective elastic modulus of the nucleus in the vertical direction 

in our theoretical model is calculated as the ratio of the average vertical compressive stress 

(exerted to the nucleus by the cytoskeleton) to the resulting average vertical compressive strain 

of the nucleus. A 60% decrease in the elastic modulus of chromatin  ̅(see equation (S2.2)), 

captures the nuclear softening observed in our experiments upon TSA treatment. The error bar 

represents the standard error of the mean. The calculated modulus drops after TSA treatments in 

experiment are 17% and 27%, respectively. The drop predicted by the simulation is 15.5%. 

  



 

Fig. S10. Experiment and simulation of cytoskeletal modification with CytoD. (A) Confocal 

fluorescent images show disruption of the actin filament network after treating fibroblasts with 

CytoD. Scale bar is 2 µm. (B) Experiments show cytoplasm softening after CytoD treatment in 

fibroblasts cultured on a rigid substrate. (C) Simulation shows the cytoskeletal elastic modulus 

decreases similar amount as observed in experiment upon CytoD treatment. The decrease of the 

modulus estimated by experiment is 32%, which agrees with the decrease of 41% observed in the 

simulation. To simulate the disruption of actin filaments upon cytoD treatment, we decrease the 

stiffness of the actin network      
   

 (by setting      
   

   in equation (S1.8)) and we measure the 

change in the total modulus of the cytoskeleton in the vertical direction. The error bar represents 

the standard error of the mean. 

  



 

Fig. S11. Experiment and simulation of cytoskeletal modification with Noco treatment. (A) 

Experiments show cytoplasm stiffening after Nocodazole treatment. (B) Simulation shows the 

effective elastic modulus of the cytoskeleton increases with disruption of the microtubule 

network. we simulate the disruption of microtubules by decreasing the stiffness of the 

microtubule network      
    

 (e.g., decreasing       in equation (S1.4)). The error bar represents 

the standard error of the mean. The modulus increase estimated by experiment is 33%, which 

agrees with the increase of 26% observed in the simulation. 

  



 

Fig. S12. Experiment and simulation of nuclear projection area changes upon CytoD and 

Noco treatments. (A) In the simulation, the actomyosin dependent compressive forces on the 

nucleus decrease with depolymerization of actin filaments which, in turn, decreases the nuclear 

projected area, which is consistent to the experiment. The decrease of the projection area 

observed in experiment and simulation is 6.7% and 5.4%, respectively. (B) On the contrary, 

depolymerization of microtubules upon Nocodazole treatment increases the actomyosin 

dependent compressive forces on the nucleus. As a result, the simulation predicts the nuclear 

projected area increases with Nocodazole treatment, similar as we observed in experiment. The 

error bar represents the standard error of the mean. The increase of the projection area observed 

in experiment and simulation is 13% and 7%, respectively. 

  



 

Fig. S13. Cells response to stiffening of their microenvironments by increasing their 

contractility, stiffness, and force generation. (A) We here present a one-dimensional 

representation of the three-dimensional cytoskeletal model to show how stiffening of the cell 

microenvironment impacts the cytoskeleton. (B) As the microposts resist against cell contraction, 

the tensile stress   is generated in the actin filament network and the microposts which increases 

with micropost stiffness  ̃ . (C) The cell responds to the increase of   by promoting 

phosphorylation of myosin motors which increases the cell contractility  . (D) Furthermore, as 

the tension in the actin filament network,  , increases with  ̃, the stiffness of the actin filament 

network,     , and subsequently the cytoskeletal total stiffness,  , increase. Note that      in our 



model increases with tension (with the tensile strain     ) to capture the fact that that cells 

respond to tension by stiffening of the cytoskeleton through recruitment of actin filaments. (E) 

The total contractile strain | |  |         |  decreases with  ̃  where      and      are the 

strains of the cytoskeletal components that are in compression (      ) and tension (      ), 

respectively. 

 

 

 

 

 

 

 

 

 

Fig. S14. Statistic results of all cells in detachment experiment. Start point indicates the time 

point right before trypsinization (t=0); End point indicates the time of 18-20 minutes afterwards. 

The bar plots are the mean value of all cells and the error bar is standard error of the mean 

(N=7). Our Brillouin microscopy experiments show the mechanical connection between 

cytoskeleton and nucleus is still functioning after trypsinization.   
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